Quantitative Aptitude Quiz

| Updated On January 16th, 2020 at 03:12 pm

Directions (Q. 1-5): What should come in place of question mark (?) in the following number series?


1. 5, 41, 321, 1921, 7681, 15361, ?
1) 21381
2) 23710
3) 22173
4) 23121
5) 1

2. 1, 3, 7, 13, 22, 34, 51, 71, 96, 124, ?
1) 137
2) 147
3) 157
4) 167
5) None of these

3. 664, 334, 85.5, 16.25, 4.03125, ?
1) 2.73012
2) 3.17203
3) 2.403125
4) 3.220175
5) None of these

4. 33, 110, 453, 2282, 13711, ?
1) 95673
2) 96747
3) 96312
4) 951321
5) 96000

5. 0.8, 3.8, 12.6, 44.8, 188.2, ?
1) 758.6
2) 868.8
3) 952.00
4) 1012.2
5) 1112.2

Directions (Q. 6-10): In the following questions two  equation numbered I and II are given. You have solve the equation and give answer if-
1.  x > y
2.  x >  y
3.  x < y
4.  x < y
5.  x = y or the relationship cannot be established.

6.      
I. 20x2 – 31x + 12 = 0             
II. 20y2 – y  –
12 = 0

7.      
I. 3x2 – 47x + 184 = 0             
II. 2y2 – 23y + 66 = 0

8.      
I. 30x – 49√x + 20 = 0             
II. 42y – 5√y – 25 = 0

9.      
I.  x2 – 10√3x + 63 = 0              
II. y2 – √2y – 24 = 0

10.      
I. x2 – 14x + 48 = 0                              
II. y2 – y – 30 = 0




ANSWERS:

1.   
5;    The
series is:
                5 × 10 – 9 = 41
                41 × 8 – 7 = 321
                321 × 6 – 5 = 1921
                1921 × 4 – 3 = 7680
                7681 × 2 – 1 = 15361
                15361 × 0 – (–1) = 1
2.   
3;    The
series is:
                1 + 1 + 1 = 3
                3 + 2 + 2 = 7
                7 + 3 + 3 = 13
                13 + 4 + 5 = 22
                22 + 5 + 7 = 34
                34 + 6 + 11 = 51
                51 + 7 + 13 = 71
                71 + 8 + 17 = 96
                96 + 9 + 19 = 124
                124 + 10 + 23 = 157
                First is numbers (1, 2, 3, 4…)
etc and second is prime numbers (1, 2, 3, 5, 7, 11, 13…).
3.   
3;    The
series is:
                664 + 4 ÷ 2 = 334
                334 + 8 ÷ 4 = 85.5
                85.5 + 12 ÷ 6 = 16.25
                16.25 + 16 ÷ 8 = 4.03125
                4.03125 + 20 ÷ 10 = 2.403125
4.   
5;    The
series is:
                13 × 2 + 7 = 300
                33 × 3 + 11 = 110
                110 × 4 + 13 = 453
                453 × 5 + 17 = 2282
                2282 × 6 + 19 = 13711
                13711 × 7 + 23 = 96000
                All are prime number >
7.
5.   
3;    The
series is:
                0.8 × 1 + 3 = 3.8
                3.8 × 2 + 5 = 12.6
                12.6 × 3 + 7 = 44.8
                44.8 × 4 + 9 = 188.2
                188.2 × 5 + 11 = 952
 6. 2; x ³ y
I.  20 x2 – 31 x + 12 = 0
5x (4x-3) – 4 (4x – 3) = 0
                   (4x –3) (5 x – 4) = 0
                   x = 3/4, 4/5
             II. 20 y2 –  y –
12 = 0
                   (5 y – 4 ) (4y + 3) = 0
                      y = 4/5, – 3/4        
           Ans
is 2 X > Y

7. 1; X > y
 I.               3x2 – 47 x + 184 = 0
                   (x–
8) (3x – 23) = 0
                   x
= 8, 23/3
                   II. 2 y2 – 23 y + 66 = 0
                   (y
–6) (2 y –11) = 0
            y =
6,

  11/2
8. 2;
I. 30 x – 25

 x – 24

 x + 20
                   (5√x– 4) (6√x– 5) = 0
                     x
= 16/25
, x = 25/36
     
                   II.
 42 y – 5
√y– 25 = 0
                   (6 √y– 5) (7√y + 5) = 0
                   y
=
 25/36, y = 25/49
                   Ans
is 2 X > Y
  
9. 5; no relation can
be established
I. x2 – 10√3+ 63 = 0
                   x2 – 10√3+ 63 = 0
                   ( x – 3√3 ) (x –7√3)= 0
                   x
=
 3√3, 7√3
                   II. y2 – √2y – 24 = 0
                    (y – 4√2) (y + 3√2) = 0
                   y
= 4
√2, -3√2
                  
10. 2; x ³ y
 I. x2 – 14 x – 48 = 0
                   (x
– 6 ) (x – 8) = 0
                   x
= 6, 8
                   II. y2 – y – 30 = 0
                   (y  + 5) (y – 6) = 0
                   y
= -5 , 6