## RBI Assistant Mains Practice Marathon Quant

## S1. Ans.(b)

Sol. Let the annual Profit be Rs. x.
Negi's salary = Rs. 0.4 x
Negi's share in profit $=\frac{x-0.4 x}{2}=$ Rs. $0.3 x$
Negi's total share $=$ Rs. 0.7 x
Atul's share $=0.3 \mathrm{x}$
$0.3 \mathrm{x}=5100 \Rightarrow x=17000$
$0.7 \mathrm{x}=11900$
If the entire profit is divided in the ratio of their investments,
Negi's share $=11900-1400=$ Rs. 10500.
Atul's share $=17000-10500=$ Rs. 6500 .
$\therefore$ Negi's investment $=\frac{10500}{6500} \times 52000=84000$.
S2. Ans (d)
Sol. ATQ
S.P. $=2350 \times \frac{85}{100} \times \frac{75}{100} \times \frac{108}{100}$
$=$ Rs. 1617.975
Required \% $=\frac{2350-1617.975}{2350} \times 100=31.15 \%$

## S3. Ans.(c)

Sol. Let sum invested by Shivam in Scheme-A be 10x
And scheme $-B=10 \mathrm{x} \times \frac{160}{100}=16 \mathrm{x}$ Solutions

## S4. Ans.(b)

Sol. Let amount invested by Prashant at SI and at CI be Rs $P_{1} \& R s P_{2}$ respectively.
So,
$P_{1}-P_{2}=4000$
$P_{1}=4000+P_{2}$
Atq,
Equivalent interest of amount invested at CI @ 20\% p.a. for 2 yrs $=20+20+\frac{20 \times 20}{100}=44 \%$
Now,
$\frac{P_{1} \times 12 \times 3}{100}-\frac{P_{2} \times 44}{100}=1040$
$9 P_{1}-11 P_{2}=26000$
Put value of (i) in (ii)
$\Rightarrow 36000+9 P_{2}-11 P_{2}=26000$
$\Rightarrow P_{2}=R s 5000$
Hence, $\mathrm{P}_{1}=$ Rs 9000


## S5. Ans. (d)

Sol. Let total work be 120 units (LCM)
So, efficiency of Shivam, Gaurav and manish are 6, 5 and 4 units/day respectively.
ATQ
Work done in 3 days $=(5+4)+(4+6)+(6+5)=30$ units
So, require time $=\frac{120}{30} \times 3=12$ days

## S6. Ans. (e)

Sol. Let total capacity of tank be 630 units.
So, efficiency of $\mathrm{A}, \mathrm{B}$ and C is 42,35 and 30 units/hr respectively.
Let total time taken be T hours.
Therefore, C opened for $T$ hours, B opened for $(T-1)$ hours and A opened for ( $\mathrm{T}-2$ ) hours.
ATQ
$30 \times T+35 \times(T-1)+42 \times(T-2)=630$
$30 T+35 T+42 T-35-84=630$
$107 T=749$
$T=7$
So, required time $=7$ hours

## S7. Ans. (c)

Sol. Let total work be 480 units (LCM)
So, efficiency of A and B are 4 units/day and 3 units/day respectively.
Let efficiency of C be x units/day.
ATQ
$(4+3) \times 15+3 \times 21+(3+x) \times 52=480$
$105+63+(3+x) \times 52=480$
$3+x=\frac{312}{52}$
$x=6-3=3$
So, required time $=\frac{480}{3}=160$ days

## S8. Ans. (e)

Sol. Let length of train X \& Y be 4L meter and 5L meter respectively.
A/Q,
$(90+117) \times \frac{5}{18}=\frac{4 L+5 L}{\frac{144}{23}}$
$207 \times \frac{5}{18} \times \frac{144}{23} \times \frac{1}{9}=L$
$\mathrm{L}=40$ meter
Length of train $X=160$ meters
Length of train $Y=200$ meters
Let, when trains are running in same direction cross each other in T sec
$(117-90) \times \frac{5}{18}=\frac{160+200}{T}$
$\mathrm{T}=48 \mathrm{sec}$

## S9. Ans.(d)

Sol.

$60 \mathrm{~km} / \mathrm{h}$
Distance $P Q=60 \times 6 \frac{1}{3}=380 \mathrm{~km}$
Speed of Swift $=\frac{380 \times 4}{19}=80 \mathrm{~km} / \mathrm{h}$

S10. Ans.(b)
Sol. Let speed of man in still water be $\mathrm{x} \mathrm{km} / \mathrm{hr}$
Water Current speed $=2 \mathrm{~km} / \mathrm{hr}$
Distance between Y to $\mathrm{Z}=40 \times \frac{75}{100}=30 \mathrm{~km}$
ATQ -
$=\frac{40}{(x+2)}+\frac{30}{(x-2)}=9$
$40 \mathrm{x}-80+30 \mathrm{x}+60=9 \mathrm{x}^{2}-36$
$9 x^{2}-70 x-16=0$
$\mathrm{x}=8 \mathrm{~km} / \mathrm{hr}$
S11. Ans.(b)
Sol. I. $x^{2}-27 x+180=0$
$\mathrm{x}^{2}-12 \mathrm{x}-15 \mathrm{x}+180=0$
$x(x-12)-15(x-12)=0$
$(x-15)(x-12)=0$
$x=15,12$
II. $y^{2}-7 y-60=0$
$y^{2}-12 y+5 y-60=0$
$y(y-12)+5(y-12)=0$
$(y+5)(y-12)=0$
$y=-5,12$
$\Rightarrow \mathrm{x} \geq \mathrm{y}$

## S12. Ans.(a)

Sol. I. $x^{2}-59 x+868=0$
$x^{2}-28 x-31 x+868=0$
$x(x-28)-31(x-28)=0$
$(x-31)(x-28)=0$
$x=28,31$
II. $\mathrm{y}^{2}-53 \mathrm{y}+702=0$
$\mathrm{y}^{2}-27 \mathrm{y}-26 \mathrm{y}+702=0$
$y(y-27)-26(y-27)=0$
$(y-27)(y-26)=0$
$y=26,27$
$\Rightarrow x>y$

TEST SERIES

## RBI ASSISTANT MAINS

## S13. Ans.(e)

Sol. I. $100 x^{2}-120 x+32=0$
$100 \mathrm{x}^{2}-40 \mathrm{x}-80 \mathrm{x}+32=0$
$20 x(5 x-2)-16(5 x-2)=0$
$(20 x-16)(5 x-2)=0$
$x=\frac{4}{5}, \frac{2}{5}$
II. $10 y^{2}-17 y+6=0$
$10 y^{2}-12 y-5 y+6=0$
$2 y(5 y-6)-1(5 y-6)=0$
$(2 y-1)(5 y-6)=0$
$y=\frac{1}{2}, \frac{6}{5}$
$\Rightarrow$ No relation

## S14. Ans.(b)

Sol. I. $15 x^{2}-22 x+8=0$
$15 \mathrm{x}^{2}-12 \mathrm{x}-10 \mathrm{x}+8=0$
$3 x(5 x-4)-2(5 x-4)=0$
$(5 x-4)(3 x-2)=0$
$x=\frac{4}{5}, \frac{2}{3}$
II. $12 y^{2}-5 y-2=0$
$12 \mathrm{y}^{2}-8 \mathrm{y}+3 \mathrm{y}-2=0$
$4 y(3 y-2)+1(3 y-2)=0$
$(4 y+1)(3 y-2)=0$
$y=-\frac{1}{4}, \frac{2}{3}$
$\Rightarrow \mathrm{x} \geq \mathrm{y}$

## S15. Ans.(c)

Sol. I. $x^{2}+8 x+15=0$
$x^{2}+5 x+3 x+15=0$
$x(x+5)+3(x+5)=0$
$(x+5)(x+3)=0$
$x=-5,-3$
II. $y^{2}-2 y-8=0$
$y^{2}-4 y+2 y-8=0$
$y(y-4)+2(y-4)=0$
$(y-4)(y+2)=0$
$y=-2,4$
$\Rightarrow \mathrm{x}<\mathrm{y}$

## S16. Ans.(d)

Sol. Number of Accord cars sold by dealers D and E together
$=\left(\frac{6}{21} \times \frac{14}{100}+\frac{3}{14} \times \frac{21}{100}\right) \times 12000=480+540=1020$
Number of City cars sold by dealers B and F together
$=\left(\frac{3}{10} \times \frac{15}{100}+\frac{6}{15} \times \frac{20}{100}\right) \times 12000=540+960=1500$
Required Difference $=1500-1020=480$

## S17. Ans.(b)

Sol. Number of Accord and Civic cars sold by dealer A together $=\frac{6}{9}$ of $12 \%=8 \%$
Number of Civic and City cars sold by dealer D together $=\frac{15}{21}$ of $14 \%=10 \%$
Required Percentage $=\frac{8}{10} \times 100=80 \%$

## S18. Ans.(c)

Sol. Total number of Civic cars sold by dealers A, B, D and E together
$=\left(\frac{2}{9} \times \frac{12}{100}+\frac{4}{10} \times \frac{15}{100}+\frac{8}{21} \times \frac{14}{100}+\frac{6}{14} \times \frac{21}{100}\right) \times 12000=320+720+640+1080=2760$
Required Average $=\frac{2760}{4}=690$

S19. Ans.(b)
Sol. Civic and City cars sold together by dealer B $=\frac{7}{10}$ of $15 \%=\frac{21}{2} \%$
Civic and City cars sold together by dealer $\mathrm{E}=\frac{11}{14}$ of $21 \%=\frac{33}{2} \%$
Required Ratio $=\frac{21}{2} \%: \frac{33}{2} \%=7: 11$

## S20. Ans.(e)

Sol. Percentage of City cars sold by:
Dealer $A=\frac{3}{9}$ of $12 \%=4 \%$
Dealer $B=\frac{3}{10}$ of $15 \%=4.5 \%$
Dealer $C=\frac{4}{15}$ of $18 \%=4.8 \%$
Dealer $D=\frac{7}{21}$ of $14 \%=4.67 \%$
Dealer $\mathrm{E}=\frac{5}{14}$ of $21 \%=7.5 \%$
Dealer $\mathrm{F}=\frac{6}{15}$ of $20 \%=8 \%$
Hence, dealer A sold the minimum number of City cars.

## S21. Ans.(d)

Sol. Average speed of Monu to Cover distance on Monday and Tuesday together $=\frac{\text { Total distance covered }}{\text { Total time taken }}$ $=\frac{120+225}{2+3}=\frac{345}{5}=69 \mathrm{~km} / \mathrm{h}$
Distance travelled by Sonu on Wednesday $=\frac{140}{5} \times 7=196 \mathrm{~km}$
Distance travelled by Sonu on Thursday $=\frac{135}{3} \times 4=180 \mathrm{~km}$
Average speed of Sonu to cover distance on Wednesday and Thursday together $=\frac{\text { Total distance covered }}{\text { Total time taken }}$
$=\frac{196+180}{8}=\frac{376}{8}=47 \mathrm{~km} / \mathrm{h}$
Required difference $=69-47=22$

## S22. Ans.(c)

Sol. Distance covered by Sonu on Friday $=\frac{210}{6} \times 7=245 \mathrm{~km}$
Distance covered by Sonu on Thursday $=\frac{135}{3} \times 4=180 \mathrm{~km}$
Speed of Sonu on Friday $=\frac{245}{5}=49 \mathrm{~km} / \mathrm{h}$
Speed of Sonu on Thursday $=\frac{180}{4.5}=40 \mathrm{~km} / \mathrm{h}$
Required $\%=\frac{49-40}{40} \times 100=\frac{9}{40} \times 100=22.5 \%$

## S23. Ans.(b)

Sol. Distance covered by Sonu on Friday $=\frac{210}{6} \times 7$
$=245 \mathrm{~km}$
Speed of Sonu on Friday $=\frac{245}{5}=49 \mathrm{~km} / \mathrm{h}$
Speed of Sonu on Saturday $=\frac{49}{7} \times 10=70 \mathrm{~km} / \mathrm{h}$
Speed of Monu on Saturday $=\frac{70}{7} \times 6=60 \mathrm{~km} / \mathrm{h}$
Required time $=\frac{210}{60}+\frac{245}{70}=3.5+3.5=7 \mathrm{hr}$

## S24. Ans.(a)

Sol. Distance covered by Sonu on Tuesday $=\frac{225}{9} \times 11=275 \mathrm{~km}$
Speed of Sonu on Tuesday $=\frac{275}{25}=110 \mathrm{~km} / \mathrm{h}$
If speed of Sonu increases by $25 \%$ on Tuesday $=110 \times 1.25$
$=137.5 \mathrm{~km} / \mathrm{h}$
Time taken to cover distance $=\frac{275}{137.5}=2$
Required difference $=2.5-2=0.5$ hour
$=30$ minutes

## S25. Ans.(e)

Sol. Speed of Monu on Thursday $=\frac{135}{2.5}=54 \mathrm{~km} / \mathrm{h}$
Distance covered by Sonu on Monday $=\frac{120}{4} \times 5=150$
Speed of sonu on Monday $=\frac{150}{3}=50 \mathrm{~km} / \mathrm{h}$
Required $\%=\frac{54}{50} \times 100=108 \%$

## S26. Ans.(b)

Sol. Pattern is $\times 2+1, \times 4+3, \times 6+5, \times 8+7, \times 10+9$
$\therefore ?=1151 \times 10+9=11519$

## S27. Ans.(c)

Sol. Pattern is $\times 1+1, \times 2+2, \times 3+3, \times 4+4, \times 5+5, \ldots$.
$\therefore ?=63 \times 4+4=256$

## S28. Ans.(a)

Sol. Series is


S29. Ans.(b)
Sol. Pattern is $\times 0.5+2, \times 1+2, \times 1.5+2, \times 2+2, \times 2.5+2$
$\therefore ?=27 \times 2.5+2=69.5$

S30. Ans.(d)
Sol. Series is


S31. Ans.(b)
Sol. From I
Sum cannot be find out as rate is not given.
From II
Difference $=\frac{\mathrm{PR}^{2}}{100^{2}}\left[\begin{array}{l}\mathrm{P} \rightarrow \text { Sum } \\ \mathrm{R} \rightarrow \text { Rate }\end{array}\right]$
$\mathrm{P}=$ Rs. 10,000
$\therefore$ CI can be find out.


## S32. Ans.(e)

Sol.

## From I \& II

Cannot be determined even after both statement.

## S33. Ans. (a)

Sol. From Statement [I]
MP = x
After two successive discounts $=\frac{80}{100} \times \frac{95}{100} \times x=0.76 \mathrm{x}$
Final S.P after taking tax $=\frac{125}{100} \times 0.76 x=0.95 \mathrm{x}$
According to question
MP - SP = 40
$x-0.95 x=40$
$0.05 x=40$
$\mathrm{x}=800$
From statement [II]
Let, MP = x
S. $P=\frac{85}{100} \times \frac{80}{100} \times x=0.68 x$

As, any value is not given so we can't find out the M.P.
$\therefore$ Hence, Statement [I] alone is sufficient to answer the question but the Statement [II] alone is not sufficient

## S34. Ans.(d)

Sol. From statement [I]
Let total amount $=\mathrm{x}$
$\frac{x}{2} \times \frac{5 \times 3}{100}+\frac{x}{2} \times \frac{6 \times 5}{100}=4500$
$\frac{x}{2}\left[\frac{15}{100}+\frac{30}{100}\right]=4500$
$x=20,000$
From statement [II]
$2420=x\left[1+\frac{10}{100}\right]^{3}-x\left[1+\frac{10}{100}\right]^{2}$
$2420=x \times 1.1^{3}-x \times 1.1^{2}$
$2420=1.331 x-1.21 x$
$0.121 x=2420$
$x=20,000$
$\therefore$ Hence, Either statement [I]alone or statement [II] alone is sufficient to answer the question.

## S35. Ans.(a)

Sol. From I,
$\mathrm{A}+\mathrm{S}+\mathrm{V}=3 \times 68=204 \mathrm{~kg}$
$\mathrm{R}+\mathrm{P}=144 \mathrm{~kg}$
$\mathrm{A} \Rightarrow 204-46-78=80 \mathrm{~kg}$
$\mathrm{P} \Rightarrow 144-68=76 \mathrm{~kg}$
$\mathrm{S}=78 \mathrm{~kg}$
From II,
$\mathrm{A}+\mathrm{S}+\mathrm{V}+\mathrm{R}=68^{*} 4=272$
$\mathrm{S}=78 \mathrm{~kg}, \mathrm{R}=68 \mathrm{~kg}, \mathrm{~V}=46 \mathrm{~kg}$
$\therefore A=272-(78+68+46)=80 \mathrm{~kg}$
$P=$ ? , $P$ cannot be determined

## S36. Ans.(b)

Sol. $\frac{45}{100} \times 80+\sqrt{841}+x^{2}=2121 \div 21$
$36+29+x^{2}=101$
$x^{2}=36$
$x=6$

## S37. Ans.(c)

Sol. $\frac{36+3 x}{23}+1=52$
$36+3 x+23=52 \times 23$
$3 x+59=1196$
$3 x=1196-59$
$3 x=1137$
$x=379$
S38. Ans.(c)
Sol. $\frac{343}{2}+\frac{175}{100} \times 350=x^{2}$
$x^{2}=171.5+612.5$
$x^{2}=784$
$x=28$
S39. Ans.(d)
Sol. 23(24 + 47-54) $=x$
$x=23 \times 17$
$x=391$
S40. Ans.(c)
Sol. $\frac{6}{5} \times 650+320+51=x$
$780+320+51=x$
$x=1151$

## TEST SERIES

## RBI ASSISTANT MAINS <br> 25 Total TestsleBooks

## adda <br> publications

## BOIKS



Visit: publications.adda247.com \& store.adda247.com
For any information, mail us at publications@adda247.com

