S1. Ans. (b)

Sol. (I) $x^{2}=529-385$
$x^{2}=144$
$\mathrm{x}=+12,-12$
(II) $2 y^{2}+51 y+324=0$
$2 \mathrm{y}^{2}+24 \mathrm{y}+27 \mathrm{y}+324=0$
$y=-12,-\frac{27}{2}$
$\therefore \mathrm{x} \geq \mathrm{y}$

S2. Ans. (c)

Sol. (I) $3 \mathrm{x}^{2}-58 \mathrm{x}+280=0$
$3 x^{2}-28 x-30 x+280=0$
$\mathrm{x}(3 \mathrm{x}-28)-10(3 \mathrm{x}-28)=0$
$\mathrm{x}=10, \frac{28}{3}$
(II) $3 y^{2}-67 y+374=0$
$3 y^{2}-33 y-34 y+374=0$
$y=11, \frac{34}{3}$
$\therefore \mathrm{y}>\mathrm{x}$

S3. Ans. (e)

Sol. (I) $25 x^{2}-25 x-176=0$
$25 \mathrm{x}^{2}-80 \mathrm{x}+55 \mathrm{x}-176=0$
$\mathrm{x}=\frac{-11}{5}, \frac{+16}{5}$
(II) $25 y^{2}-55 y+18=0$
$25 y^{2}-10 y-45 y+18=0$
$y=\frac{2}{5}, \frac{9}{5}$
\therefore No relation Ans.(a)

S4. Ans. (e)
Sol. (I) $20 \mathrm{x}^{2}-41 \mathrm{x}+20=0$
$20 x^{2}-25 x-16 x+20=0$
$\mathrm{x}=\frac{5}{4}, \frac{4}{5}$
(II) $16 y^{2}-22 y+7=0$
$16 y^{2}-14 y-8 y+7=0$
$\mathrm{y}=\frac{1}{2}, \frac{7}{8}$
\therefore No relation

S5. Ans. (c)

Sol. (I) $2 x-y=\frac{31}{15}$
(II) $3 x+5 y=20$

Solving (i) and (ii)
$x=\frac{7}{3}, y=\frac{13}{5}$
$\therefore \mathrm{y}>\mathrm{x}$

S6. Ans. (d)

Sol. Given $\mathrm{x}=4 \mathrm{~km} / \mathrm{hr}$, let speed of current $=\mathrm{ykm} / \mathrm{hr}$
$\frac{d}{x-y}=\frac{3 d}{x+y}$
$2 \mathrm{x}=4 \mathrm{y}$
$\mathrm{y}=2 \mathrm{~km} / \mathrm{hr}$

S7. Ans. (a)

Sol. Let radius of $1^{\text {st }}$ cone be r_{1} and that of second cone be r_{2}.
$\pi r_{1} \ell=3\left(\pi r_{2} .3 \ell\right)$
or, $\pi r_{1} \ell=9 \pi r_{2} \ell$
$\Rightarrow \frac{r_{1}}{r_{2}}=\frac{9}{1}$
Ratio of areas $=81: 1$

S8. Ans. (b)

Sol. Let present age of B is x years.
So, present age of $\mathrm{D}=\frac{9 \times(x-5)}{10}+5=\frac{9 x+5}{10}$
Present age of $\mathrm{A}=\frac{4}{5} \times \frac{9 x+5}{10}=\frac{18 x+10}{25}$
Present age of $\mathrm{E}=\frac{5}{11} x$
ATQ
$\frac{18 x+10}{25}-\frac{5}{11} x=15$
$73 x+110=4125$
$x=\frac{4015}{73}=55$
So, present ages of A, B, C, D and E are 40 years, 55 years, 35 years, 50 years and 25 years respectively.
\therefore required average $=\frac{40+55+35+50+25}{5}=\frac{205}{5}=41$ years
S9. Ans. (e)
Sol. $\mathrm{A}+\mathrm{B}+\mathrm{C}=84 \times 3=252$
$A+B+C+D=80 \times 4=320$
Age of $D=320-252=68$
Age of $\mathrm{E}=71$
$\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}=316$
$B+C=316-(68+71)$
$B+C=177$
Age of $A=252-177=75 \mathrm{~kg}$.

S10. Ans. (a)

Sol. Let t be the time which is excess of 40 days.
$200 \times 5=100(t+5)$
$1000=100 t+500$
$100 t=500$
$t=5$ days

S11. Ans (a)

Sol. Ratio of their profit $=6280: 3768$
$=785$: 471
Let total profit in the business $=$ Rs. x
$x \times \frac{70}{100} \times \frac{314}{1256}=700$
Total profit $=700 \times\left(\frac{100}{70}\right) \times \frac{1256}{314}$
$=10 \times 100 \times 4$
$=4000$ Rs.

S12. Ans. (c)

Sol. Krishna $\rightarrow 3 x \times 2 t \Rightarrow 6 x t$
Nandan $\rightarrow x \times t \Rightarrow x t$
Ratio of their profits $=6: 1$
\therefore Required amount $=\frac{4000}{1} \times 7=28000$ Rs.

S13. Ans. (c)

Sol. Total bad oranges $=510 \times \frac{70}{1700}=21$
\therefore Required probability $=\frac{(510-21)}{510}=\frac{163}{170}$

S14. Ans. (d)

Sol. Total possible outcomes $=(1 / 2)^{3}=1 / 8$
Favorable outcomes $=(\mathrm{HHT}),(\mathrm{HTH}),(\mathrm{THH})=3$
\therefore Required Probability $=3 / 8$

S15. Ans (a)
Sol. Ratio of profit share of A and $B=\frac{8400 \times 24}{8000 \times 18}=\frac{7}{5}$
Remaining profit $=12000 \times \frac{85}{100}=$ Rs 10200
Profit share of $\mathrm{B}=10200 \times \frac{5}{12}=R s 4250$

S16. Ans. (b)
Sol. Quantity I:
$\frac{{ }^{3} \mathrm{C}_{2}}{{ }^{12} \mathrm{C}_{2}}=\frac{1}{22}$
Quantity II:
$5\left(\frac{1}{2}+\frac{1}{2}+\frac{2}{7}-\frac{1}{14}-\frac{3}{14}\right)=\frac{1}{x}$
$6=\frac{1}{x}$
$x=\frac{1}{6}$
Quantity II > Quantity I

S17. Ans. (b)

Sol. Let side of cube and radius of sphere be a and r respectively.
$\Rightarrow 6 \mathrm{a}^{2}=4 \pi \mathrm{r}^{2}$
$a=\sqrt{\frac{2}{3} \pi} r$
Quantity I:
Since, Volume of cube $=a \times a \times a$
Cube $\div \sqrt{ } \pi$
$=\frac{2}{3} \pi \times \sqrt{\frac{2}{3}} \pi r^{3} \div \sqrt{ } \pi$
$=(2 / 3)^{\frac{3}{2}} \pi r^{3}$
Quantity II : volume of sphere
4
$\frac{4}{3} \pi r^{3}$
\therefore Quantity II > Quantity I

S18. Ans. (e)

Sol. Let cost price $=100 \mathrm{x}$
So selling price $=120 \mathrm{x}$
Marked price $=\frac{120 \mathrm{x}}{70} \times 100=\frac{1200}{7} \mathrm{x}$
Profit\% = 20\%
When article sold 35 Rs. more
Profit $\%=\frac{20 \times 150}{100}=30 \%$
$35 \rightarrow 10 \mathrm{x}$
$100 \mathrm{x}=350$
$120 x=420$
$\frac{1200}{7} x=600$
Quantity I:
$420+35=455$
Quantity II:
Discount percent $=241 / 6 \%$
Discount $=\frac{600 \times 145}{600}=145$ Rs.
Selling price $=600-145=$ Rs 455
Quantity I = Quantity II

S19. Ans. (a)

Sol. Quantity I - Total work $=72$ units (Lcm of days taken by A \& B)
Efficiency of $\mathrm{A}=\frac{72}{24}=3$ units $/$ day
Efficiency of $B=\frac{72}{18}=4$ units/day
Let efficiency of $\mathrm{C}=\mathrm{x}$ unit/day
$7 x+7(1.4 x)=72 \frac{175}{3} \times \frac{1}{100}=42$ units
$\mathrm{x}=2.5$ units
Efficiency of $D=1.4 \times 2.5=3.5$ units
$(\mathrm{A}+\mathrm{B}+\underline{\underline{\mathrm{D}}})$ together $=\frac{72}{(3+4+3.5)}$

$$
=6 \frac{6}{7} \text { days }
$$

Quantity II -
Ratio of efficiency of Satish : Ankit $=100 \mathrm{x}$: 40x

$$
=5 x: 2 x
$$

Total work $=22.5 \times 2 \mathrm{x}=45 \mathrm{x}$ units
ATQ,
$($ Ankit + Satish $) \times 4.5=4.5(5 x+2 x)$
$=31.5 \mathrm{x}$ work
Remaining work $=45 \mathrm{x}-31.5 \mathrm{x}$
$=13.5 \mathrm{x}$
Veer efficiency $=\frac{13.5}{4.5}=3$ units/day
$($ Ankit + Satish + Veer $)=\frac{45 x}{(5 x+2 x+3 x)}$
$=4.5$ days
So, Quantity I > Quantity II

S20. Ans. (b)

Sol. Quantity I - Let present ages of Hemant and Amit be 9x and 5x years respectively.
ATQ
$\frac{5 x-3}{9 x-3}=\frac{8}{15}$
$75 x-45=72 x-24$
$x=7$
So, required difference $=4 x \times 12=48 x=336$ months
Quantity II-
Sum of present age of 5 members $5 \times 40+5 \times 2=210$ years
Sum of present age of 6 members (as a new born last year) $210+1=211$ years
Sum of ages of 6 members after 4 years $=211+4 \times 6=235$ years
So, required average $=\frac{235}{6} \times 12=470$ months
So, Quantity I < Quantity II

S21. Ans. (b)

Sol. $1+\left(1^{3}-1\right)=1$
$1+\left(2^{3}-2\right)=7$
$7+\left(3^{3}-3\right)=31$
$31+\left(4^{3}-4\right)=91$
$91+\left(5^{3}-5\right)=211$
$211+\left(6^{3}-6\right)=421$
So, wrong number $=4$.

S22. Ans. (b)

Sol. $5+8 \times 1=13$
$13+7 \times 2=27$
$27+6 \times 3=45$
$45+5 \times 4=65$
$65+4 \times 5=85$
$85+3 \times 6=103$
$103+2 \times 7=117$
So, wrong number $=50$

S23. Ans. (d)

Sol. $4+\left(1^{2}+1\right)=6$
$6+\left(2^{3}+1\right)=15$
$15+\left(3^{2}+1\right)=25$
$25+\left(4^{3}+1\right)=90$
$90+\left(5^{2}+1\right)=116$
$116+\left(6^{3}+1\right)=333$
So, wrong number $=113$
S24. Ans. (b)
Sol. $12+8=20$
$20+16=36$
$36+24=60$
$60+32=92$
$92+40=132$
$132+48=180$
So, wrong number $=32$
S25. Ans. (c)
Sol. $14^{2}+1=197$
$15^{2}+1=226$
$16^{2}+1=257$
$17^{2}+1=290$
$18^{2}+1=325$
$19^{2}+1=362$
$20^{2}+1=401$
So, wrong number $=255$

S (26-30)

Total population of city $\mathrm{X}=7100$
Population below poverty line in city $\mathrm{X}=1704$
Population of X other than BPL $=7100-1704=5396$
Total population of city $Z=\frac{7100}{(100-11.25)} \times 100=8000$
BPL population in city $Z=1 / 4 \times 8000=2000$
Population other than BPL in city L $=5396+160=5556$
Avg. population of city Y and K .
$=$ Avg. population of City X and City Z
$=\frac{7100+8000}{2}=7550$.
Let total population of city K be x
$\therefore(1.5 \mathrm{x}+\mathrm{x})=7550 \times 2$
$x=6040$.
\therefore Total population of city $\mathrm{Y}=6040 \times 1.5=9060$
BPL population of city $\mathrm{K}=\frac{2000}{2} \times 3=3000$
BPL population in city $\mathrm{L}=\mathrm{BPL}$ population in city X
= 1704
Total population in city $\mathrm{L}=1740+5556=7260$
BPL population in city Y
$=\frac{20}{100} \times[9060+8000]-2000$
$=3412-2000=1412$

City	Below poverty line	other than BPL	Total
X	1704	5396	7100
Y	1412	7648	9060
Z	2000	6000	8000
K	3000	3040	6040
L	1704	5556	7260

S26. Ans. (a)
Sol. Required difference $=\left(\frac{3000+1704}{2}\right)-\left(\frac{1704+1412}{2}\right)$
= 2352-1558
= 794

S27. Ans. (c)

Sol. Required percentage $=\frac{\frac{6040+7260}{2}}{8000} \times 100$
$=\frac{6650}{8000} \times 100=83.125 \%$

TEST SERIES

S28. Ans. (b)

Sol. BPL population in city $A=\frac{3040}{2}=1520$
\therefore Total population in city A.
$=1520 \times 4=6080$

S29. Ans. (e)

Sol. Required Avg. $=\frac{1704+1412+2000+3000+1709}{5}$
$=\frac{9820}{5}=1964$

S30. Ans. (b)

Sol. Required ratio $=\frac{1412}{1704}=353: 426$

S31. Ans(c)

Sol. Let length and breadth of rectangle be 7 x and 4 x respectively
From I,
Given, $\pi r^{2}=616$

$$
\begin{aligned}
& r^{2}=\frac{616 \times 7}{22} \\
& r=14 \mathrm{~cm}
\end{aligned}
$$

length of rectangle $=14 \times 2=28 \mathrm{~cm}$
breadth of rectangle $=\frac{28}{7} \times 4=16 \mathrm{~cm}$
From I and II together,
$2(1+b)-4 a=20$
$2(28+16)-4 a=20$
$4 \mathrm{a}=88-20$
$\mathrm{a}=17 \mathrm{~cm}$
area of Square $=(17)^{2}$

$$
=289 \mathrm{~cm}^{2}
$$

So, Statement I and II both together sufficient

S32. Ans. (e)

Sol. Both the statements are not sufficient

S33. Ans. (c)

Sol. if the max marks of exam $=x$
Raman $=\frac{x}{4}$
$\Rightarrow \frac{\mathrm{x}}{4}=288-128=160$
$\mathrm{x}=640$
\therefore Minimum passing marks $=160+64=224$
Required \% $=\frac{224}{640} \times 100=35 \%$

S34. Ans. (c)

Sol. Given no. of white ball
Let \rightarrow a
From I. let probability $\rightarrow \frac{x}{y}$
Let no. of red ball $\rightarrow p x$, total balls $\rightarrow p y$
From II. \rightarrow Let probability $=\frac{s}{t}$
Let no. of black ball = qs, total balls = qt
From I \& II
$\mathrm{px}+\mathrm{a}+\mathrm{qs}=\mathrm{qt}=\mathrm{py}$
we know the values of x, y, s, t and a so we can find the value of p and q
So probability of white ball found $=\frac{\mathrm{a}}{q t}$ or $\frac{\mathrm{a}}{\mathrm{py}}$
\therefore I \& II together sufficient to answer the question

S35. Ans. (b)

Sol. Only II is sufficient to answer the question
When we cut sphere into hemisphere total surface area of two hemisphere
Total surface area of two hemisphere
$3 \pi r^{2}+3 \pi r^{2}=\pi \times 21 \times 21$
$r=$ find out
So, volume of sphere can be find out.
S36. Ans. (b)
Sol. $\frac{45}{100} \times 80+\sqrt{841}+x^{2}=2121 \div 21$
$36+29+\mathrm{x}^{2}=101$
$x^{2}=36$
$x=6$

S37. Ans. (c)

Sol. $\frac{36+3 x}{23}+1=52$
$36+3 x+23=52 \times 23$
$3 x+59=1196$
$3 x=1196-59$
$3 x=1137$
$x=379$

S38. Ans. (c)
Sol. $\frac{343}{2}+\frac{175}{100} \times 350=x^{2}$
$x^{2}=171.5+612.5$
$x^{2}=784$
$x=28$

S39. Ans. (d)

Sol. 23(24 + 47-54) $=x$
$x=23 \times 17$
$x=391$

S40. Ans. (c)
Sol. $\frac{6}{5} \times 650+320+51=x$
$780+320+51=x$
$x=1151$

adda
 publications

BOIKS

Visit: publications.adda247.com \& store.adda247.com
For any information, mail us at publications@adda247.com

