21. DAIRY CHEMISTRY

Unit 1

Milk constituents, their normal contents and physical and chemical nature. Specific compositional differences among milk from various species; Variations in milk composition due to breed, feed, season, stage of lactation and mastitis; Colostrum and abnormal milks, physical properties of milk; Acid base equilibria, oxidation-reduction potential, density, viscosity, interfacial tension, freezing point, electrical conductivity, thermal conductivity, refractive index, milk buffer capacity, physical equilibria among milk salts; Effect of various treatments on salt equilibria; Salt balance and its importance in processing of milk; Water activity, and its effect on shelf life; Colloids, properties and colloidal stability of milk; Emulsions, foams and gels formation, their stability and importance in dairy processing.

Lactose – structure, isomers, physical, chemical and biochemical properties. Browning mechanisms. Estimation and biosynthesis. Lactose intolerance. Significance of carbohydrates in milk and milk products. Distribution of trace elements in milk and their technological and nutritional importance; Water soluble vitamins – molecular structure and their levels in milk and milk products, biological significance, and

factors affecting their levels.

Unit 2

Levels, distribution, isolation and genetic polymorphism of different milk proteins; Casein micelles – structure, size distribution, stability and physico-chemical properties; Casein models. Amino acid composition and physico-chemical properties of different fractions of caseins; Whey process, denaturation of milk proteins as influenced by temperature, pH and additives; Biosynthesis, structure, function and physico-chemical properties of α-lactalbumin and β-lactoglobulin, immunoglobulins, lysozyme, lactoferrins, lipoproteins and fat-globule membrane proteins and their importance; Milk protein allergenicity; Role in immune response; Chemistry of milk enzymes and their significance with reference to milk processing and milk products. Kinetics of chemical reactions and enzyme kinetics; Casein hydrolysate, coprecipitates, and whey protein concentrates; bioactive peptides.

Unit 3

Milk lipids – classification, composition, structure and general physical and chemical properties. Auto-oxidation – definition, theories, factors affecting, prevention and measurement. Antioxidants – mechanism of reaction and estimation. Lipolysis. Fatty acids – profile, properties and affecting factors. Unsaponifiable matter. Cholesterol – structure, forms, importance and level in milk. Chemistry of phospholipids and their role in milk and milk products. Fat – soluble vitamins – chemistry, physiological functions, levels in milk, cream, butter and ghee. Biosynthesis of milk fat. CLA biosynthesis and its nutritional and health benefits.

Unit 4

Milk adulteration and detection methods; Estimation methods for antibiotics, pesticides, heavy metals, lactose, lactate, protein, total solid, fat, salt, vitamin C, calcium, phosphorous, iron, citric acid in milk and milk products. Estimation of vitamin A, total phospholipids and free fatty acids in ghee. Estimation of starch in food. Measurement of BOD and COD in dairy waste.

Unit 5

Cream – Size distribution of fat globules, creaming phenomenon, composition and properties of cream and dry cream. Chemistry of neutralization and ripening. Butter. Mechanism of churning during butter preparation. Desi and creamery butter composition, properties, microstructure, grading, standards and defects. Ghee –

Compositional differences in ghee prepared by different methods and variations in ghee and butter oil, Analytical constants and factors affecting them. Differences in cow and buffalo ghee. Hydrolytic and oxidative deterioration of ghee, their causes and prevention. Adulteration of ghee and methods of detection. Ghee grading, Antioxidants: natural and synthetic. Physico-chemical characteristics of buttermilk and ghee residue.

Unit 6

Heat stability of milk as affected by various milk constituents and additives. Role of protein-protein interaction and age gelation of UHT milk. Physical and chemical changes during preparation of concentrated milk and subsequent storage. Compositional differences between condensed and evaporated milk. Dried milk; Structure and physico-chemical properties. Physical properties of instat powder, Infant food. Spoilage of milk powder and its control. Khoa: composition and changes during manufacture. Composition and changes during preparation of chhana and paneer.

Unit 7

Cheese: Composition and varietal differences. Chemistry of rennin action. Influence of acidity, renneting and heat on the process of cheese manufacture. Changes during manufacture and ripening. Role and mechanism of action of stabilizers and emulsifiers, rheological properties and defects of cheese. Milk clotting enzymes from different sources – microbial, animal and plant. Theories and metabolic pathways of fermentation. Dahi, yoghurt and Acidophilus Milk: Composition and specific differences, chemical changes during fermentation, flavour development. Composition of Lassi and buttermilk. Nutritional and therapeutic significance of fermented milk products.

Unit 8

Ice-cream: Composition and physical structure, changes during ageing, freezing, hardening and defects. Role and mechanism of stabilizers and emulsifiers. Kulfi: composition and differences with ice-cream.

Unit 9

Definition of quality, quality control and assurance. Standards, statutory and voluntary organization. PFA act, sampling, labelling, PFA and AGMARK, BIS, ISO9000 standards for milk products. Total quality management, sensory evaluation of milk and milk products. Calibration of glasswares (lactometer, butyrometer, milk pipette, thermometer) used in Quality control laboratory, legal requirements of packaging material and product information, nutrition labelling.

Unit 10

Spectroscopy – UV – Vis spectrophotometry, IR. Separation techniques: TLC, GLC, HPLC, Ion exchange, size exclusion, affinity chromatography, analytical sedimentation, sedimentation equilibrium, isopycnic ultracentrifugation. Ultrafiltration. Precipitation by salting out agents. Electrophoresis – PAGE, SDS-PAGE, Radio-tracers technique. Flame photometry and potentiometry (principle, various electrodes, electrometric measurements of pH, buffers).

22. DAIRY MICROBIOLOGY

Unit 1

Microflora associated with milk and milk products and their importance. Morphological, natural, physiological, spoilage and pathogenic characteristics of commonly occurring microbes in milk and milk products; Newer approaches for classification of microorganisms; types of microbes in normal and mastitic milk and importance of somatic cell counts; Food poisoning, food infections, toxi-infections and other milk borne diseases; Emerging food borne pathogens associated with milk and milk products; Epidemiological studies using DNA fingerprinting techniques like RAPD, RFLP, DGGE, TGGE, Rep-PCR, etc. Sources of microbial contamination of raw milk and their relative importance in influencing quality of milk during production, collection, transportation and storage. Microbial and chemical changes in raw milk during chilling and refrigeration.

Unit 2

Bacteriological aspects of processing techniques like bactofugation, thermisation, pasteurization, sterilization, boiling. UHT, pulsed field treatment and membrane filtration of milk. Types of spoilages in heat-treated milks. Enumeration of heat resistant microbes. Germination and sporulation of bacterial spores; Prevention of post-processing contamination in heated milk. Identification of sources of contamination in heat treated milks. D, F and Z values for various microbes. Heat induced damage and repair in bacterial cells. Role of resuscitation in recovery of heat injured microbial cells; Bacteriological grading of raw and heat-treated milk. Microbiological spoilage aspects of thermally processed milks; Role of psychrotrophic, thermoduric, thermophilic bacteria and their metabolites in milk spoilage, biofilms.

Unit 3

Naturally occurring preservative systems in milk like LP system, Immunoglobulins, Lysozyme, Lactoferrin, etc. Preservation of milk and milk products by physical (irradiation) and chemical agents; Food grade Biopreservatives (GRAS), Bacteriocins of lactic acid bacteria; Nisin and other antimicrobials produced by Lactic Acid Bacteria (LAB). Application of bacteriocins as food grade biopreservatives in enhancing shelf life of foods; Enhancing antimicrobial potentials of LAB by recombinant DNA technology and Genetic engineering; Residues of antibiotics, detergents, sanitizers, pesticides and aflatoxins in milk, mode of action on microbes and biological consequences – as well as their detection by newer approaches like Charm test, HPLC, ELISA and biosensor based techniques.

Unit 4

Microbiological quality of fat rich products (cream and butter); Frozen dairy products (ice-cream); Concentrated dairy products (evaporated and sweetened condensed milk) and Dried milks (roller and spray dried milks and infant foods); Factors influencing the microbiological quality of above products during their production, processing, handling, storage and distribution; Microbial defects associated with these products and their control; Microbiological safety in relation to potential pathogens and their public health significance; National and International microbiological standards for dairy products (BIS, ICMSF, Codex Alimentarius Standards).

Unit 5

Lactic Acid Bacteria (LAB) as starters: Types of starter cultures and their classification; Identification of LAB based on conventional and molecular techniques such as 16S rRNA sequencing. Ribotyping, PCR and DNA fingerprinting; Microbiology of starter cultures; Single and multiple strain cultures, and custom cultures; Associative growth of starter cultures; Concepts of starter growth and metabolism of

lactose and citrate; Production of taste and aroma compounds by starters in fermented milks and milk products; Changes caused by starters in milk during growth; Modem trends in propagation, production and preservation of starter cultures; Production of starter concentrates; DVS starters: Judging of starter quality and activity; Starter defects; Starter failure; Intrinsic and extrinsic factors associated with starter failure; Bacteriophages of dairy starters and their impact on dairy industry; Prevention and control of starter failures.

Genetics and molecular biology of acid, flavour and therapeutic properties of LAB. Role of plasmids in their metabolism; Genetic manipulation of LAB for ameliorated performance; Food grade cloning and expression vectors; LAB as hosts for expression for heterologous proteins and development of food grade oral vaccines; LAB genome

projects.

Unit 6Dairy products as functional / health foods: LAB as probiotics in development of health foods; Selection criteria, colonization and functional properties; Antibacterial and therapeutic properties of probiotic cultures; Survival and stability of probiotics in health foods, gut and their tracking; Concept of probiotics and synbiotics; Genetic markers of probiotic functions and their application for mass screening; Genomics of probiotic Lactobacilli and Bifidobacteria; Cloning and sequencing of probiotic genes; Sequence analysis; Blast, Clustal W and Clustal X. Pair-wise and multiple alignment; Homology and Phylogenetic tree / dendrograms; LAB as nutraceutical ingredients – a source of vitamin synthesis and exopolysaccharide production; Bioactive peptides and their role as nutraceuticals in dairy foods.

Unit 7

Role of starters in the preparation of yoghurt, koumiss, kefir, cultured buttermilk, and whey based beverages and other fermented products; Therapeutic properties of fermented foods; Microbial defects in these products, safety and their prevention and control; Microbiology of hard, semi-hard and soft varieties of cheese; Role of starter culture and non-starter lactic acid bacteria (NSLAB) during preparation and ripening of cheese; Accelerated ripening of cheese; Production and use of microbial rennet substitutes; Recombinant chymosin and its application; Defects in cheese, Microbiological safety and their prevention and control.

Unit 8

Microbiological quality of indigenous dairy products, viz., khoa and chhana based sweets: Burfi, peda, rasogulla, gulabjamun, kheer, kulfi, shrikhand, paneer, dahi, lassi, ghee, etc. Sources of microbial contamination, their role in spoilage of these products and their microbiological safety, Prevention and control: Role of personnel and environmental hygiene at the level of production and processing; Need for microbiological standards for assessing the quality and safety of indigenous products; Concept of TQM and HACCP implementation in improvement of quality and safety of indigenous products; Current role of modified packaging for extending the shelf stability of indigenous dairy products, Antimicrobial packaging, controlled and modified atmosphere (CAP / MAP) based technologies.

Unit 9

Preparation of byproducts from dairy effluents by microbial fermentation; Cleaning and sanitization of equipments, machineries and other contact surfaces used in production and processing of milk and milk products; Types of detergents and their mechanisms of soil removal from the surfaces; Efficacy of sanitizers including gaseous disinfectants and evaluation of sanitizing disinfectant properties; Factors affecting activity of detergents and sanitizers; Built detergents, commercial detergents and

combined detergent-sanitizers; Biological consequences of dairy waste disposal; Disposal of dairy effluents after microbial treatment; BOD and COD analysis in dairy effluents; Microbiological quality of air and water used in Dairy Plants.

Unit 10

Microbiological aspects of quality control and quality assurance in production of milk and milk products; Good Manufacturing Practices (GMP) and the relevance and Sanitary Standard Operating Procedures (SSOP); Importance of Total Quality Management (TQM) in dairy industry; Application of HACCP programme in dairy industry; Safety concerns of bio-film formation on equipment surfaces and their control measures; Risk assessment approaches and role of productive microbiology in dairy foods; Conventional and current methods like imepdence, ATP luminescence, pyruvate, etc. in detection of food pathogens; Application of immunological, PCR, Real time PCR, DNA probes, Microarrays (Biochips) and Biosensors, etc. for detection of food pathogens; Biosafety of Genetically Modified Organisms (GMOs) / foods.

23. DAIRY TECHNOLOGY

Unit 1: Market Milk

Status of dairy industry in India. Recent policy changes related to dairy sector (MMPO & WTO). Principles and practices for production of high quality milk. Methods of milk procurement, payment, quality assessment, detection of adulterants, handling and transportation of milk. Methods of raw milk preservation. Physical properties and chemical composition of milk of cow, buffalo and other species of milch animals; their importance in milk processing. Centrifugal separation, clarification and bactofugation and factors affecting their efficiency. Homogenization process and its implications in dairy processing; efficiency of homogenization and factors affecting it. Thermal processing of milk. Principles and methods of pasteurization and sterilization. UHT processing and aseptic packaging. Special milks. Principles of production, processing and marketing of toned, double toned, reconstituted, recombined, flavoured and filled milks.

Unit 2: Fat Rich Dairy Products

Basic principles and recent concepts in production and processing of different types of cream, butter, margarine, fat spreads, butter oil and *ghee*. Fractionation of fat and its application. Health aspects of milk fat. Cholesterol reduced and cholesterol-free dairy products.

Unit 3: Frozen Milk Products

Trends in the frozen milk products industry in India. Definition, classification and composition of ice-cream and other frozen desserts. Role of milk constituents and other ingredients, processing steps, packaging and storage methods on quality of ice-cream. Technological aspects of manufacture of plain, fruit, soft-serve, low fat and dietic ice-creams and novelties. Indigenous frozen desserts, kulfi, malai-ka-baraf etc.; their production techniques and quality. Distribution of frozen desserts. Newer ingredients for use in the ice-cream industry.

Unit 4: Cheese and Fermented Milk Products

Status and scope of cheese industry. Fermented milk products – their nutritional and therapeutic value. Definition and classification of cheese and fermented milks. Milk in relation to cheese making. Manufacture of Cheddar, Gouda, Mozzarella and Swiss cheeses. Role of starter cultures in cheese quality. Types of rennet for cheese manufacture. Physical and chemical changes during cheese ripening. Manufacture of processed cheese, cheese spread and cheese foods. Mechanization of cheese-making process. Modern concepts in accelerated cheese ripening. Storage and defects. Production and storage of dahi, yoghurt, shrikhand, lassi and misti dohi. Probiotic dairy products.

Unit 5: Concentrated and Dried Milk Products

Milk in relation to processing and manufacture of concentrated and dry milks. Principles and methods of manufacture, storage and defects in sweetened condensed milk. Evaporated milk. UHT sterilized concentrated milk. Whole milk powder. Skim milk powder, high-fat powders, and ice-cream powder. Instantization of milk powder. Newer technologies and formulations for infant foods and weaning foods, malted milk and malted milk foods.

Unit 6: Indigenous Milk Products

Status and role of traditional dairy products in Indian dairy industry and economy. Characteristics of various traditional products, their prospects and constraints. Methods of production; physico-chemical changes during manufacture; quality attributes, shelf-life, preservation and packaging. Process innovations relating to *khoa*, *chhana*, *paneer*, *rabri*, *kheer*, *khoa* and *chhana*-based sweets.

Unit 7: Utilization of Milk Byproducts

Status, availability and utilization of dairy byproducts. Associated economic and pollution problems. Manufacture of casein, sodium and calcium-caseinates, edible casein, hydrolysates, coprecipitates, whey protein concentrates, whey beverages, whey syrups and lactose. Use of buttermilk. Development / formulation of new products based on dairy byproducts.

Unit 8: Packaging of Milk and Milk Products

Present status and scope. Role of packaging and package design considerations. Evaluation of packaging materials and package performance. Packaging materials and systems for liquid, concentrated, dried, frozen and fat-rich dairy products. Special packaging methods such as vacuum, shrink and aseptic packaging. Modified atmosphere packaging. Package standards, regulations and quality control.

Unit 9: Cleaning and Sanitation

Properties of important dairy detergents and sanitizers. Choice of detergents and sanitizers guiding principles and limiting factors. Basic principles in formulating the cleaning and sanitizing procedures for dairy equipments. Automation in cleaning and sanitization processes including CIP. Quality of water in detergency.

Unit 10: Advances in Dairy Technology

Radiation preservation of milk and milk products. Theory and application of microwave heating, ohmic heating and high pressure processing. Immobilization of enzymes and their use in dairy and food industry. Theory of ultrafiltration, reverse osmosis, nanofiltration and microfiltration techniques. Selection and types of membranes. Application of membrane technology in dairy and food industry. Fouling, cleaning and sanitization of membranes. Emulsions, foams and gels. Electrodialysis and ion exchange in dairy applications. Processing of cereals and legumes for incorporation in milk and milk products. Use of milk solids in bakery and confectionery products. Application of biotechnology in dairy industry.

Unit 11: Legal and Quality Aspects for Milk and Milk Products

Safety aspects of milk with reference to mycotoxins, antibiotics, pesticides, weedicides and heavy metals. PFA, BIS and Agmark standards for milk and milk products. Quality systems such as HACCP, ISO certification, etc.

24. LIVESTOCK PRODUCTS TECHNOLOGY

Unit 1: Basic and General Aspects of Livestock Products

Composition and physico-chemical properties of cow and buffalo milk. Milk proteins, lipids, carbohydrates, minerals, vitamins and other minor constituents of milk. Nutritive value of milk. Reception of milk - platform tests, filtration and clarification, chilling, separation, standardization, pasteurization and homogenization. Cleaning

and sanitation of dairy equipments.

Present status and future prospects of meat and poultry industry. Structure, composition, physical biochemical and nutritive aspects, and functional properties of different kinds of meat, fish, poultry and eggs. Sensory evaluation and organoleptic properties of livestock products. Postmortem aspects of muscle as meat. Ageing of meat and chemical changes. Meat in human health. Bacteria, yeasts, I molds, parasites important in food microbiology. General principles of spoilage. Chemical and deteriorative changes caused by micro-organisms. Contamination and spoilage of meat, fish, poultry and eggs. Food poisoning and foo-borne infections. Assessment of microbial condition and wholesomeness of different livestock products. National and International microbial standards.

Unit 2: Abattoir and Poultry Processing Plants

Origin and source of animal foods. Lay out, construction, design, organization, operation and maintenance of abattoirs and poultry processing plants. Pre-slaughter care and slaughtering techniques for different animals and birds. Antemortem and postmortem inspection. Judging and grading of animals and birds on foot and on rail. Condemnation and disposal of unfit material. Disposal of slaughterhouse effluents. Sanitation, plant operation and maintenance. Sanitary standards for meat packing plants. Meat cutting and deboning. Adulteration and misrepresentation of meat. State, municipal and other regulations pertaining to meat trade. Meat food products order. Processing and utilization of various animal and poultry by-products, slaughterhouse and poultry plant offals. Methods of utilization of blood, fat, hides and skin, horns, hooves, wool, hair, feather, glands and other by-products. Importance and utilization of by-products in industry, Application of computer science in abattoir operation. Robot technology and its application in meat and poultry industry.

Unit 3: Processing and preservation

Principles of processing of dairy products. Special milk: sterilized milk, flavoured milk, homogenized milk, soft curd milk, Vitaminized/irradiated milk, fermented milk, standardized milk, reconstituted/rehydrated milk, recombined milk, toned, double toned milk, skimmed milk, Humanizd milk. Processing of dairy products: - butter, butter oil, icecream, cheese, cream, condensed milk, dried milk, dried milk products etc. Indigenous dairy products: ghee, khoa, dahi, makkhan, chhana, paneer, Khurchan, Lassi, Organic milk.

Principles of preservation of livestock products. Equipment and technology of processing and preservation. Industrial food preservation, chilling, freezing, freeze drying, dehydration, canning irradiation, pasteurization, curing, smoking, use of chemical additives and antibiotics. Cooking methods including micro-wave cooking. Tenderisation and use of enzymes for processed foods. Production of value added products, process methods, process optimization and quality control. Development and preservation self stable (camed and dehydrated) intermediate moisture, textured, cured, fermented fabricated meat and poultry products. Sanitation, regulation and

inspection of processed meat foods. Effect of processing on nutritional, chemical, microbiological and organoleptic qualities of livestock products. Economics of precosting and product development. Application of biotechnology in processing and preservation of meat, poultry and fish products. Bioactive products and biogenic amines.

Unit 4: Wool, Mohair and Fur

Basic aspects of wool science. Shearing, physical and chemical characteristics, processing, grading, standardization, storage and marketing of wool, mohair and fur (National and International).

Unit 5: Packaging

Principles of packaging. Types of packaging materials. Characterisation, methods and systems of packaging. Gas packing, Vacuum packing, modified atmosphere packing, shrink and stretch packing, industrial packaging. Aseptic and retort pouches. Standardisation and quality control of packaging material. Product attributes and packaging requirements for different livestock products. Latest trends in packaging of meat, poultry, eggs, wool and fish products.

Unit 6: Quality Control

Grades and grading of livestock products. Stress factors effecting meat quality – PSE, DFD, Hot boning, Cold shortening and electrical stimulation. Regulatory and inspection methods – Municipal and State laws. Bureau of Indian Standards and International Standards of fresh meat and poultry including their products and byproducts. Detection of antibiotics, chemical residues, heavy metals and toxins in meat. Techniques for detection of adulteration of meat. HACCP concept of quality control of meat, fish, poultry and eggs.

Unit 7: Marketing

Livestock production and supply characteristics. Meat consumption and related demands. Types of market and trends in marketing livestock products and byproducts, wholesale, retail and future trends. Consumer aptitude, education and awareness, and popularization of new products. Corporate bodies in regulation of markets, marketing boards, Co-operative agencies, internal trade and development of international market for livestock products. Organization, operation and sanitation of meat, poultry, fish and egg retailing units. Fast food chains and super markets. Situation and outlook and methods for promotion and marketing of livestock products.

25. LIVESTOCK PRODUCTION AND MANAGEMENT

Unit 1: General

Present status and future prospects of livestock and poultry development in India. Animal production systems in different agro-climatic zones of the country. Sustainability issue in relation to environment. Effect of industrialization and mechanization of agriculture on livestock sector. Breeds of cattle, buffalo, sheep, goat, pigs, equine, camels, rabbits and poultry. Various livestock and poultry development programmes operative in the country. Animal behaviour vis-à-vis adaptation and production. Principles of domestication and behavioral factors favouring domestication. Mating bahviour in various species of livestock and poultry. Agnostic behaviour – causes and control. Social order in farm animals. Adaptation of livestock and poultry in tropics, deserts cold and high altitudes. Mixed farming, arable farming, integrated and specialized farming systems. Biotechnology in animal improvement.

Unit 2: Breeding Management

Basic principles of inheritance. Concept of heritability, repeatability and selection. Important methods of selection and systems of breeding in farm animals and birds. Importance of maintaining breeding records and their scientific interpretation.

Unit 3: Feeding Management

Nutrients and their functions. Nutritional requirements and feeding managements of different categories of livestock and poultry. Feed additives including antibiotic and probiotic feeding in farm animals and birds. Formulation and compounding of rations for various categories of livestock and poultry. Least cost ration formulation. Systems of feeding livestock and birds. Feeding standards for livestock and poultry. Feed conversion efficiency of various categories of livestock and poultry. Processing and storage of conventional and non-conventional feed ingredients. Agro-industrial byproducts in animal feeds.

Unit 4: Reproduction Management

Reproductive systems of farm animals and birds. Climate and nutrition affecting reproductive performance in farm animals. Importance of early pregnancy diagnosis. Methods of heat detection. Artificial insemination. Oestrous prediction and synchronization. Causes of disturbed fertility and its prevention in farm animals. Management factors affecting reproductive efficiency. Summer and winter management problems and their solutions.

Unit 5: Shelter Management

Housing systems, Selection of site and lay out of animal and poultry houses. Space requirement for livestock and poultry, Housing designs in different agro-climatic regions. Macro and micro- climatic changes affecting designs of animal and poultry houses. BIS (standards) for livestock and poultry housing. Construction of cheap animal and poultry housing utilizing local resources. Automation in livestock farming. Disposal of animal wastes under urban and rural conditions. Disposal of carcasses.

Unit 6: Health Management

General approach to livestock health programmes. Prevention of diseases. Hygiene and sanitation on animal farm. Symptoms of ill health, important infectious diseases of livestock and poultry and their control. Vaccination schedules in animals and

poultry. Internal and external parasites and their control. Accidental health disorders and their control. Common disinfectants used on animal farms. Concept of first aid at farms. Segregation and quarantine management for large animals and birds. Quarantine Act, Zoonotic diseases, labour health programme.

Unit 7: Production and Management of Cattle and Buffalo

Cattle and buffalo production trends and factors affecting them. Prenatal and postnatal care and management of cattle and buffalo. Care of neonates and young calves. Management strategies for reducing mortality in caalves, age at first calving, and calving intervals. Management to improve reproductive efficiency in cattle and buffalo. Feed conversion efficiency for growth and milk production. Water requirement of dairy animals. Herd registration.

Unit 8: Production and Management of other Animals

Draft animals: Population dynamics of various categories of draft and work animals in India. Characteristics of draft animals. Estimating draft capacity of different species. Harness for various types of draft animals. Training of work animals. Feeding, care and management of draft animals. Management of camel with special reference to rearing, feeding and watering. Behavioural studies of various draft animals. Economics of draft animals *vis-à-vis* machine power.

Sheep and goat: Selection of breeds and breeding systems for improving wool, mohair, meat and milk. Feeding practices for economic rearing. Scope of intensive milk and meat production from goat. Mutton and wool production from sheep. Low

cost shelter management. Sheep and goat reproduction. Health management.

Poultry: Brooding of chicks. Management of growing, laying and breeding flocks. Shelter management. Biosecurity and environmental considerations. Cage layer management and well being of birds. Light management. Hatchery business management. Management during stress. Chick sexing. Maintenance of farm records. Health and sanitation problems. Prevention and disease control. Poultry shows. Handling care of table eggs and processing of birds for meat.

Equine: Care and management of horses, feeding and breeding systems, shelter

management, shoeing, preparation and management of race horses.

Swine: Importance of pig as a meat animal. Selection of breeds and breeding systems for improving pig production. Feeding strategies for pigs. Care and Management of pregnant sows and unweaned pigtlets. Reproduction problems in pigs and remedial measures.

Rabbit: Economic importance. Important fur and meat type breeds. Housing, handling, feeding, watering, breeding, management, sanitation and health care of rabbits.

Unit 9: Wildlife Management

Status of wildlife in India and its conservation. Biological and ecological basis of management of wildlife. Breeding and feeding of wildlife in captivity. Health management.

Unit 10: Forage Production and Conservation

Classification of feeds and forages. Feed and fodder resources used for feeding of livestock and poultry. Nutritive value of feeds and fodders. Conservation and

preservation of feeds and fodders. Annual and perennial fodder crops. Strategies for round the year fodder production. Pasture development and management. Enrichment of poor quality roughages.

Unit 11: Economics and Marketing of Livestock and Poultry and their Products
Economic principles as applied to livestock production. Production functions. Farm
size, resources and product combinations. Cost concepts. Effect criteria in use of
resources in livestock production. Maintenance of evaluation of different production
records. Insurance and financing of livestock enterprises. Project formulation for
setting up livestock farms. Different approaches to marketing of livestock and its
products. Present status of cattle fairs and methods of selling livestock. Market news
and information. Determination of prices of livestock products. Vertical integration in
livestock products industries.

26. POULTRY SCIENCE

Unit 1: Poultry Genetics and Breeding

Phylogeny of poultry species, class, breed, variety and strains of chickens, ducks, geese, turkeys and other species of poultry. Mendelian traits in poultry. Inheritance of qualitative traits in poultry and their usefulness. Inheritance of comb, plumage and other qualitative traits. Sex-linked and sex influenced traits, their inheritance and usefulness. Economically important traits and their modes of inheritance. Gene action influencing the traits. Lethal and semi-lethal traits in poultry and their mode of inheritance. Quantitative traits. Inheritance of egg number, egg weight, growth rate, livability, fertility, hatchability, egg quality and other economic traits. Heritability and their estimates. Genetic correlations, their computation and application. Selection methods for genetic improvement-natural, artificial, directional, disruptive and stabilizing. Individual selection and family selection. Mass selection, combined selection and indirect selection. Construction of selection indices. Exploitation of additive and non-additive gene effects. Selection for specific characters. Recurrent and reciprocal recurrent selection. Part record versus complete record selection. Genotype and environment interaction. Relative merits and demerits of different methods of selection. Different mating systems-Diallel mating, pair mating, pen mating and block mating. Artifical insemination - collection and insemination techniques, dilution, diluents and cryopreservation of semen. Inbreeding and out-breeding. Pure-line breeding. Cross-breeding. Hybridization and hybrid vigour in improving economic traits, 3-way and 4-way crossing and development of hybrids. Modern trends in commercial poultry breeding. Major genes and their usefulness in poultry breeding in tropics. Dwarf gene and its usefulness in broiler breeding. Practical breeding programmes for developing broilers and layers. Selection for disease resistance. Immunogenetics. Blood group systems. Biochemical polymorphism and usefulness in poultry breeding. Development of transgenic chicken. Different molecular techniques for estimation of genetic diversity and similarity among breeds and lines of poultry. Scope of intergrating quantitative and molecular approaches for genetic selection in poultry.

Unit 2: Poultry Nutrition

Various nutrients and their role in poultry. Nutrient requirements of different species of poultry as per Bureau of Indian Standards and National Research Council of the USA. Partition of energy. Estimation of M.E. and T.M.E. Essential and critical amino acids and their inter-relationships. Evaluation of protein quality. Essential fatty acids. Essential vitamins and minerals and their functions. Nutrients deficiency, toxicity, synergism and antagonism. Naturally occurring toxiciants, their adverse effects on poultry and methods to overcome them. Fungal exotoxins of feed origin, their adverse effects on poultry, and methods to overcome them. Different systems of feeding wet mash, dry mash, crumble and pellet feeding. Restricted and phase feeding programme. Male separate feeding. Factors influencing the feed intake. Feed ingredients and sources of various nutrients. Quuality control and BIS specifications for feed ingredients. Unconventional feed stuffs and their utilization for economic feed formulation. Feed formulation for different species and groups. Least cost feed formulation and linear programming. Non - nutrient feed additives. Antibiotics, probiotics - direct feed microbials, antimicrobials, anticoccidials, performancepromoters, antioxidants, flavouring agents, colouring agents and other non-nutrient feed additives.

Unit 3: Avian Physiology

Homeostasis and its regulation; Characteristics features of endocrine glands; Regulation of feed and waer intake; Feed Passage rate in G.I. tract in relation to digestion and absorption efficiency; Functional regulation of digestion, absorption and metabolism of nutrients; Endocrine control and variable factors influencing growth process; Mechanisms that determines the sex and allows the development of left ovary and oviduct only; Physiological control of age at sexual maturity, ovarian follicular hierarchy, atresia, ovulation, oviposition, pause, clutch size and secretion of egg components; Photoperiodism and its role in optimization of reproductive functions; physiology of avain testes, spermatogenesis, semen ejaculation and its characteristics. Fate of sperm in oviduct and fertilization; Respiratory system – mechanisms of gaseous exchange; Thermoregulatory and stress mechanisms; Physio-biochemical stress responses and remedial approaches; Factors influencing reproductive functioning.

Unit 4: Poultry Products technology

Structure, chemical composition and nutritive value of egg. Various measures of egg quality. Shell, albumen and yolk quality assessment. Factors influencing egg quality traits. Mechanism of deterioration of egg quality. Weight and quality grades of egg as per BIS, Agmark and USDA standards. Egg processing and storage. Different methods of preservation of table eggs and their relative merits and demerits. Preparation of various egg products and their uses. Processing, packing, preservation and grading of poultry meat. Further processing and fast food preparation. hysical, chemicals, microbial and organoleptic evaluation of meat quality. Processing and utilization of egg and poultry processing waste.

Unit 5: Poultry Management

Poultry industry in India - past, present and future prospects. Statistics of egg and meat production in India. Major constraints facing the poultry industry. Selection, care and storage of hatching eggs. Principles and methods of incubation. Concept of modern hatcheries. Factors essential for incubation of eggs. Testing of eggs. High altitudes and hatchability of eggs. Embryonic communication. Photo acceleration and embryonic growth. Factors influencing hatchability and production of quality chicks. Analyzing hatchability problems. Hatchery hygiene. Fumigation procedure. Prevention of hatchery borne diseases. Utilization and disposal of hatchery waste. Prerequisite of good hatchery. Lay out of a modern hatchery. Equipments required in a modern hatchery. Single and multi-stage incubators. Hatchery business. Sexing, handling, packaging and transportation of chicks. Principles and methods of brooding. Space required for brooding, rearing, feeding and watering. Preparation of brooder house to receive young chicks. Forced feeding of turkey poults. Brooding of quails, ducklings and turkey poults. Managements during growing period. Overcrowding, culling. Management of replacement pullets for egg production and breeding stocks. Management of layers and breeders. Light management. Debeaking, dubbing and other farm routines. Littre management. Broodiness and forced moulting in layers. Management of turkey, ducks, quails and Guinea fowl. Summer and winter management.

Farm location and site selection. Ideal layout of poultry houses for different systems of rearing. Design of poultry houses like brooder, grower, broiler, layer and cage house, poultry processing unit, feed mill, etc. Environmentally controlled and open poultry

houses. Types of construction materials used. Cross-ventilation and ridge ventilation. Effect of pollution on production performance of birds. Ammonia control in poultry houses. Type of brooders, feeders, waters, laying nests, cages, etc. Automation in poultry production.

Unit 6: Economics and Marketing

Economic principles as applied to poultry production. Production functions. Farm size-resources and product combinations, efficiency criteria in use of resources in poultry production. Cost concept. Maintenance and evaluation of different production records. Insurance and financing of poultry enterprises. Project formulation for setting up of poultry farms and hatcheries. Production and requirement of poultry products in India and for exports. Various marketing channels. Transportation of eggs and chicken. Marketing approaches. Horizontal and vertical integration in poultry industry and their importance. Price spread in marketing of poultry and poultry products. Role of cooperatives in poultry farming.

Unit 7: Poultry Health Management

Common diseases of poultry – bacterial, viral, fungal, protozoan, parasitic and other emerging diseases of poultry, their prevention, control and treatment. Metabolic and nutrient deficiency diseases and disorders. Vaccination programmes. Deworming programmes. Control of coccidiosis, worms, ectoparasites and flies. Medication procedures. Cleaning and disinfection of poultry houses. Drinking water sanitation. General farm sanitation and hygiene. Safe disposal of dead birds and farm waste. Stress control. Heat stroke. Cold shock. Vices of poultry and their control. Bio-secutity measures in poultry farms.

27. VETERINARY MEDICINE

Unit 1: General Medicine

Epidemiology and its ingredients. Definitions of diseases known as – infectious, contagious, sporadic, epizootic, enzootic, panzootic, exotic, zoontic, etc. Meaning and purpose of segregation, isolation, quarantine, etc., role of occurrence, prevalence, incidence, morbidity rate, mortality rate, case fatality rate, mode of transmission, vectors, spread, economics, etc. in terms of epidemiology of diseases. General systemic states like – bacteremia, septicemia, pyemia, toxemia, hyperthermia, hypoglycemia, allergy, anaphylaxis, shock, dehydration, stress, sudden death, anasarca, anaemia, pica, etc.

Unit 2: Diagnosis of Animal Diseases

History taking. General clinical examination. Special clinical examination – electrocardiography, paracentesis, rumen fluid examination, haematology, blood biochemistry, urinalysis, ophthamosocopy, otoscopy, endoscopy, ultrasounography, biopsies, etc.

Unit 3: Gastroenterology

Specific conditions of organs of gastrointestinal system with special emphasis to – simple / acid / alkaline indigestion, GI ulcers, choke, tympany, colic, impaction, traumatic reticulitis / peritonitis, abomasal displacement, ascites, jaundice, hepatitis, enteritis, gastritis, etc.

Unit 4: Diseases of Cardiovascular and Pulmonary System

Principles of circulatory failure, Acute heart failure, Congestive heart failure, Perpheral circulatory failure. Mycocardial and valuvalar diseases. Epistaxis. Pulmonary congestion and oedema. Emphysema. Pneumonia. Pleurisy, URI Aspiration pneumonia.

Unit 5: Diseases of Urinary, Nervous, Musculoskeletal and Integumentary Systems

Nephrosis, Nephritis. Pyelonephritis. Cystitis. Urolithiasis. Uremia. Cerebral anoxia. Encephalitis. Encephalomalacia. Meningitis. Encephalomyelitis. Paralysis. Urticaria. Dermatitis. Photosensitisation. Seborrhoea. Conjunctivitis. Otitis. Keratoconjunctivitis. Corneal ulcerns. Eczema. Impetigo. Alopecia.

Unit 6: Production and Deficiency Diseases

Metabolic profile test, milk fever, Downer's cow syndrome, ketosis, hypomagnesaemia, diabetic ketoacidosis, hypomagnesaemia, post-parturient haemoglbinuria, azoturia. Fat cow synodrome, rickets, osteomalacia, osteodystropinafibrosa. Trace mineral and vitamin deficiency.

Unit 7: Common toxicities

Sources, pathogenesis, clinical manifestations, post-mortem findings, diagnosis and treatment of conditions occurring in the following classes of poisonings: Metal Corrosives / irritants. Plant poisonings. Water-borne toxicities. Pesticide poisonings. Insect bites and stings. Snake bite. Environmental pollution hazards. Radiation hazards and injuries.

Unit 8: Infectious Diseases (Bacterial and Mycoplasmal)

Etiology, epidemiology, pathogenesis, clinical manifestations, postmortem findings, diagnosis, treatment and control of the following diseases of livestock: Mastitis,

Strangles. Caseous lymphadenitis in sheep and goats. Clostridial diseases. Ulcerative lymphangitis in horses & cattle. Listeriosis, Leptospirosis, Erysipelas, Collibacillosis, Salmonellosis, Pasteruellosis, Brucellosis, TB, JD, Actinomycosis, Actinobacillosis, Glanders, and Mycoplasmal diseases.

Unit 9: Infectious Diseases (Virtal, Chamydial, Rickettsial and Fungal)

Etiology, epidemiology, pathogenesis, clinical manifestations, postmortem findings, diagnosis, treatment and control of the following diseases of livestock: Hog cholera. African swine fever. Leucosis FMD, RP. PPR. BMC BSE. Bovine viral diarrhoera. Muscoal diseases. Bluetongue. Influenza. Maedi. Pulmonary adenomatosis. Rabies. Encephalomyelitis. Pseudorabies. Louping ill. Caprine arthritis, encephalitis, Scrapie, Visna, Contagious ecthyma. Pox, Papillomatosis, Distemper. Infectious canine hepatitis. Parvo virus enteritis. Feline panleucopenia. Anaplasmosis, Heart water diseases, Contagious opthalmia., Aspergillosis, Ring worm, Bursattee, Lymphangitis, Babesiosis, Theileriosis, Coccidiosis, Trypanosomosis, Toxoplasmosis.

Unit 10: Parasitic Diseases

Etiology, epidemiology, pathogenesis, clinical manifestations, postmortem findings, diagnosis, treatment and control of the following diseases of livestock: Major conditions produced by nematode, cestode and trematode infestations. Major conditions produced by arthropod parasites.

Unit 11: Poultry Diseases

Etiology, epidemiology, pathogenesis, clinical manifestations, postmortem findings, diagnosis, treatment and control of the following diseases of poultry: Newcastle disease, IBD, ILT, mycoplasmosis, coccidiosis, salmonellosis, necrotic enteritis, malabsorption. leucosis. Mareck' disease, mycotoxicosis, avian encephalomyelitis. hydropericardium syndrome. avian influenza, psittiacosis-ornithosis, TB, histomonosis, spirochaetosis, trichomonosis, etc., parasitic diseases of poultry.

Unit 12: Veterinary Jurisprudence and Ethics

Judicial procedure. Duties of veterinarian particularly as an expert evidence. Vetrolegal aspects of wounds. Vetero-legal aspect of death in general, due to diseases, drowning, near drowing, electrocution, lightening, etc. Post-mortem examination of a vetro-legal, cases. Collection and dispatch of materials for forensic science examiniation. Common offense against animals. Common frauds in dealing with livestock and livestock products. Animal Insurance. Identification of animal species for vetero-legal purposes. Determination of time since death. Examination of blood and semen stains. Blood grouping in animals and its vetero-legal significance. Veterinary ethics: Code of conduct, professional ethics and etiquette for veterinarian. Laws: Role of veterinarian. Legal enactment in IPC related to animals and veterinarians. Prevention of Cruelty to Animal Act, Indian Veterinary Council Act. Wild life (protection) Act. Glanders and Farcy Act, Livestock Importation Act. Dangerous Drug Act and Prisoning Act. Legal provisions related to animals, animal diseases and drugs.

Unit 13: Special therapeutic Approaches

Veterinary fluid therapy with fluid, electrolyte, plasma expanders, packed cell transfusions, etc. Clinical assessment of their requirement and doses. Blood transfusion with blood groups in animals-their therapeutic significance. Blood matching methods. Oxygen therapy.

Unit 14: Prevention and Control of Diseases

General principles of control of diseases. Role of OIE in disease control. Internationally recongnised control methods of designated diseases. Prevention and control methods for national, area and herd based control programmes of diseases like TB, JD, rabies, brucellosis, HS, anthrax, BQ, mastitis, FMD, bluetongue, etc.

Unit 15: Common Diseases of Zoo, Laboratory Animals and Wildlife

Clinical signs, diagnosis and treatment of diseases of wildlife and zoo animals: Shock, stress, diseases of cardiovascular system, capture myopathy, metabolic and and by chemicals plants, toxicosis diseases, nutritional paratuberculosis, pasteurellosis, anthrax, rabies, FMD, RP, Kyasanur forest diseases (KFD), surra, helminthiasis. Clinical symptoms, diagnosis and treatment of diseases of laboratory animals: Tyzzer's diseases, salmonellosis, pasteurellosis, strepto and mycoplasmosis corynibacteriosis, psedudomoniasis, staphylococcosis, herpesvirus infection, pox diseases, coccidiosis, toxoplasmosis, giardiasis, helminthic infection, dermatophytosis, scabies, dermatitis, metabolic and nutritional deficiencies. Management related diseases of mice, rat, guinen pig, hamster and rabbit.

28. VETERINARY MICROBIOLOGY

Unit 1: General Bacteriology

Miestones in the development of microbiology, Classification and nomenclature of bacteria. Structure, function and chemistry of bacterial nuclear apparatus. Cytoplasm, Intracellular granules, Cell wal,. Cytoplasmic membrane, Mesosomes, Capsule, Flagella, Fimbrae, Endospore, Protoplasts, Spheroplasts, L-forms, Involution forms. Bacterial stains, staining and microscopy. Growth and nutritional requirements of bacteria. Bacterial enzymes. Respiration in bacteria. Carbohydrate protein, fat and nucleic acid metabolism in bacteria. Reproduction and growth phase of bacteria. Effects of chemical and physical agents and antibiotics. Bacterial variations including transduction, transformation and conjugation. Bacterial vaccines and toxins.

The role of microbial toxins in the pathogenesis of diseases; Biochemical and biological characteristics of toxins produced by various bacteria. Toxin producing Gram-positive and Gram-negative bacteria. Properties and clinical conditions produced by different

bacterial toxins.

Unit 2: Systematic Bacteriology
Systematic study of bacteria belonging to genera Borrelia, Leptospira, Campylobacter,
Pseudomonas, Brucella, Bordetella, Escherichia, Citrobacter, Salmonella, Shigella,
Klebsiella, Enterobacter, Proteus, Vibrio, Haemophilus, Staphylococus, Streptococcus,
Bacillus, Clostridium, Listeria, Erysipelothrix, Corynebacterium, Nocardia, Rickettsia,
Chalmydia, Mycoplasma, Acholeplasma, Spiroplasma, Anaeroplasma and
Thermoplasma, Rhodococcus, Mycobacterium and Neisseria.

Unit 3: General Virology

Historical development of virology. Evolution, classification and nomenclature of viruses. Biophysical and biochemical characteristics of viruses. Cultivation of viruses and their growth pattern in cell culture, embryonated eggs and experimental animals. Purification and concentration of viruses. Qualitative and quantitative assay of viruses. Viral replication. Virus-host cell relationships. Replication strategies of animal viruses and molecular pathogenesis for selected viral system. Latent, persistent and chronic virual infections. Study of genetic variability of animal viruses through use of monoclonal antibodies, autoimmunity, immunosuppression and viral mutation in persistence infections. General principles of laboratory diagnosis of viral diseases. Epidemiology and pathology of viral ifections. Immune mechanism in viral diseases. Interference and interferon. Viral vaccines, point of action of antiviral molecules during the replication cycle of a virus and search for new antiviral compounds, viruses and gene therapy. Chemotherapy of viral infections.

Unit 4: Systematic Virology

Systematic study of RNA and DNA viruses in livestock and poultry with reference to antigenicity, cultivation, pathogenesis, epidemiology, diagnosis and immunity, RNA viruses: Retroviruses and lymphotropic viruses, Visna and Maedi, Arboviruses, Rotaviruses. Birnaviruses. Picornaviruses. Bunyaviruses. Cornoaviruses. Togaviruses, Paramyxoviruses, Orthomyxoviruses, Rhabdoviruses. Picornaviruses. Bunyaviruses. Arenaviruses. Arterioviruses. Calciviruses. Filovirsuses, DNA viruses: Poxviruses. Hepadnaviruses. Iridoviruses, Adenoviruses, Papovaviruses. Paravoviruses. Hepadanaviruses. Circoviruses. Unclassified viruses. Slow viruses Scrapie.

Unit 5: Mycology

General characterstics of fungi. Classification and study of pathogenic fungi-Epidermophyton, Microsporum, Trichophyton, Cryptococcus, Aspergillus, Blastomyces, Coccidioides, Histoplasma, Candida, Rhinosporidum, Contaminating fungi, Rhizopus, Mucor and Penicillium. Fungi causing mastitis, abortion and mycotoxicosis.

Unit 6: Immunology

Historical Perspectives. Host-parasite relationships. Antigens. Types of antigens. Properties and specificity of antigens. Factor determining antigenicity. Haptens and carriers. Heterophile antigens. Adjuvants. Mechanisms of action, classification and their uses. Immunoglobulins – their classes and sub-classes, structure and function. Allotypes. Idiotypes. Genes coding for Igs. Generation of diversity. Monoclonal antibodies. Purification of antibodies. Theories of antibody formation. Lymphoid organs: primary, secondary and circulation of lymphocytes, cells involved in the immune response – B lymphocytes, T lymphocytes, subsets and nature of receptors. Macrophages, Dendritic reticular cells, Langerhan's cells. Cellular interactions Cellmediated immune responses. Mechanism of interaction of antigen and antibody. The complement system. Classical and alternate pa;thways. Serological reactions: agglutination, precipitation, neutralization, CFT, FAT, ELISA, DIE, RIA, etc, Immunological methods as an aid to diagnosis, blotting techniques like Northern, Western blotting, Major, Histocompatibility complex: organization.

Nature of antigens and MHC restriction. Hypersensitivity – immediate and delayed types, and mechanism of hypersensitivity. Mechanism of immunity, autoimmunity

and immunological tolerance.

Unit 7: Molecular Cell Biology (Vaccine & Diagnostic Technology)

Role of biotechnology in diagnostics and vaccines, RNA electropherotyping. Probes preparation of cDNA. Use of DNA probe in animal diseases diagnosis. Monoclonal antibodies. Application on monoclonal antibodies for diagnosis of animal diseases. Preparation of monoclonal antibodies. Nucleic acid hybridization. Modern trends in vaccines. Recombinant DNA vaccines and their probable use in animal diseases. Bioinformatic tools in microbial research, Biosafety, Biosecurity, GMP and GLP.

29. VETERINARY PARASITOLOGY

Veterinary Helminthology (Platyhelminthes, Nemanthelminthes), Veterinary Entomology (Insecta and Acarina), Veterinary Protozoology (Parasitic Protozoa), Clinical Parasitology, Parasitic Zoonoses, Diagnostic Parasitology, Management of Livestock Parasitism, Immunoparasitology, Antiparasite drug testing guidelines.

Unit 1: Veterinary Helminthology

Introduction to veterinary helminthology, general account of morphology, classification, life-cycle patterns, epizootiology, pathogenesis, symptoms, diagnosis; treatment and control of parasites belonging to the various families.

Unit 2: Veterinary Entomology:

Introduction to veterinary entomology, classification, distributions, morphology, lifecycle, seasonal patterns and economic significance of insects and acarines belonging to the various families. Treatment, control and integrated arthropod pest management. Current advances in immunological interventions/ Control of arthropods.

Unit 3: Veterinary Protozoology:

Introduction to veterinary protozoology, classification, morphology, life-cycle, clinical symptoms, pathogenesis, diagnosis, chemotherapy, prophylaxis and control of parasites belonging to the various families.

Unit 4: Clinical Parasitology:

Clinical and parasitological signs of parasitic infections in domestic animals, Parasitic diseases of skin, eyes, alimentary, respiratory, urinary, genital, nervous, cardiovascular and haematopoietic systems. Keys to indentification and different diagnosis of helminthic eggs, nematode larvae, gravid proglottids of major tape worms, blood protozoans and apicomplexan group of parasites.

Unit 5: Parasitic Zoonoses

Introduction and importance of parasitic zoonoses, classification of parasitic zoonoses, geo-veterinary and epidemiological aspects including factors influencing prevalence, distribution and transmission of diseases. Role of reservoir hosts, natural habitat, wildlife and their public health significance, clinical features, pathology, diagnosis, treatment, control and prophylaxis of zoonotic parasitic infections.

Unit 6: Management of Livestock Parasitism

Factors affecting epidemiology, host environment, development and survival of infective stages, microhabitat, seasonal development (hypobiosis/diapause), dietary and host factors altering susceptibility, concurrent infections. Influence of genetic factors, general approaches to control of parasitic diseases – stock management practises, stock rates, rotational grazing, clean grazing. Parasite worm burden (EPG). Strategic and tactical control strategies involved in chemical control of helminth, protozoan and arthropod infestations. Broad and narrow-spectrum anthelminitics, antiprotozoal drugs, insecticides and acaricides. Newer drug delivery systems-slow and pulse release methods. Anthelminitic failure – drug resistance monitoring and management. Prospects of alternative methods of control, breeding for host resistance against parasites. Control of vectors and intermediate hosts and sustainable management. Estimation of economical losses due to parasitic diseases.

Unit 7: Immuno Parasitology

General principles of parasitic immunity and immune responses to helminths, protozoa, arthropods – The adaptive immune responses, evasion of immunity, classical antiparasite responses – concomitant immunity, premunition, spring-rise, self-cure, VLM, CLM, parasitic granuloma, nodule formation, Parasitic antigens relevant to immunity and diagnosis, their identification and purification-general protocols, immunomodulators and their use in immunopotentiation. Demonstration and characterisation. Development of live, attenuated, killed and new generation vaccines.

Unit 8: Diagnostic Parasitology

Laboratory diagnostic procedures for parasite identification and detection, coprodetection techniques, floatation/concentration, methods, direct microscopy, parastic staining and special techniques used in parasite identification. Culture and identification of nematode larvae, cercaria, identification of metacestodes and animal infestation, methods for parasite isolation. Diagnostic procedures for manage and bot infestations. General immunodiagnostic assays (ELISA, IFAT, Dot-ELISA, EITB). Principles of validation of diagnostic assays, and OIE recommendations for diagnosis and knowledge of referral laboratory of O.I.E. and molecular techniques used in parasite epidemiology and diagnosis.

30. VETERINARY PATHOLOGY

Unit 1: Introduction, History and Etiology

Introduction, history and scope of pathology. Definitions. Etiology of the disease. Predisposing factors, intrinsic and extrinsic factors responsible for the disease. Physical agents, mechanical injuries. Heat, cold and decreased atmospheric pressure, light (photosensitization) UV light, microwaves, electricity, chemical agents-exogenous chemicals (toxin, poisons, drugs and food substances), endogenous chemicals (metabolites, cytolytic or inhibitory immune complexes, free radicles, oxidants)

Unit 2: Haemodynamics Derangements, Degeneration and Necrosis:

Disturbances of circulation / haemodynamic derangements hyperaemia, ischaemia, haemorrhage, sludged blood, thrombosis, embolism, infarction, oedema and shock. Disturbances of cell metabolism – protein, carbohydrate and lipid metabolism, pigment metabolism, pathological calcification / ossification. Apoptosis, necrosis, gangrene. Ultrastructural changes in cell organelles in haemodynamic derangements and cell metabolic disturbances.

Unit 3: Inflammation and Healing

Inflammation – definitions associated with inflammatory phenomenon, etiology of inflammation, cardinal signs, pathogenesis of inflammation, chemical mediators released from injured tissues and inflammatory cells. Cellular reponse in inflammation, structure and functions of cells associated with inflammation. Role of humoral and cell mediated defenses. Various classifications of inflammation. Healing, cellular regeneration capability of different body cells. Role of cells (macrophages, fibroblasts, myofibroblasts, endothelial cells), extracellular matrix components and growth factors in healing.

Unit 4: Immunopathology

Immunopathology – anibody and cells, immuno-competence of foetus and new-born. Immune mediated tissue injury, hypersensitivity reactions- anaphylaxis, Arthus reaction, cyototoxic antibody reaction, immune complex disease, delayed hypersensitivity to chemicals, immuno-deficiency diseases, defective immuno-competence, autoimmune diseases.

Unit 5: Genetically Determined Diseases

Genetic abnormalities, aberrations of chromosomes, mosaicisi, chimerism, anomalies in sex chromosomes and it autosomal chromosomes. Pathological states determined by one or more genes, lethal genes.

Unit 6: Disturbances in Cell Growth and Oncology

Disturbance in cell growth – aplasia, hypoplasia, hyperplasia, atrophy, metaplasia, dysplasia. Neoplasms-growth, etiology, classification, morphology, and behaviour of the neoplasms, structure and biology of the tumor cell, tumor immunology, tissue response to tumors, spread of humors, pathological features of various neoplasms.

Unit 7: Postmortem Diagnosis and Histopathological Techniques

Posmortem examination as a diagnostic tool. Postmortem techniques for different species including poultry, postmortem changes, lesions in various organs in different diseases, identification and interpretation of lesions, preparation of necropsy reports. Handling of necropsy in vetero-legal cases, collection, preservation and dispatch of

materials for diagnosis. Fixation and processing of tissues for histopathology and histochemistry. Different staining techniques. Histochemistry and histoenzymology as diagnostic tools. Principles of electron microscopy, processiong of tissue for scanning and transmission electron microscopy.

Unit 8: Clinical Pathology

Clinical laboratory examination of various biomaterials from different livestock species, complete blood counts, serum enzymology, bone marrow examination, erythrocytes, leucocytes and platelet disorders and their interpretations. Electrolyte and acid base analysis, altered electrolyte concentrations and their interpretations, fluid accumulation disorders, examination of effusions (chemistry and exfoliative cytology). Complete examination of urine, skin scrapings stools, CSF and milk for pathological constituents and interpretation of results.

Unit 9: Systemic Pathology

Pathology of cardiovascular, haemopoietic, respiratory, digestive, urinary, genital, nervous and musculoskeletal systems, endocrine glands, organ of special senses i.e, eye, ear, skin, appendages.

Unit 10: Pathology of Infectious Diseases

Pathology of bacterial, mycotic, viral, mycoplasmal, rickettsial, chlamydial and parastic diseases. Diseases caused by prions.

Unit 11: Avian Pathology

Farm placements and building in relation to disease, management and nutrition in relation to disease. Biosecurity in the control of diseases. Stress and its effects. Omphalitis and yolk sac infection, Newcastle disease, infectious bronchitis, infectious laryngio-tracheitis, viral arthritis, infectious bursal disease, egg drop syndrome, inclusion body hepatitis and hydropericardium syndrome, infectious stunting syndrome, swollen head syndrome, Marek's disease, avian leucosis / sarcoma complex, salmonellosis, pasteurellosis, mycoplasmosis, chalamydiosis, colibacillosis, spirochaetosis, aspergillosis, thrush, mycotoxicosis, parasitic diseases - nematodes, cestodes and protozoa, nepherosis / nephritis syndrome, multi-etiology syndromes. Immunosuppression and conditions / diseases associated with it. Vaccinations against various diseases, their failures and remedies.

Unit 12: Nutritional and Production Pathology

Pathology of nutritional deficiency disease - protein, carbohydrate, mineral and vitamins. Concept of production diseases - pathology of milk fever, ketosis, magnesium tetany, rumen indigestion, nutritional haemoglobinuria.

Unit 13:Pathology of Toxicosis

Clinicopathological features of toxicosis due to heavy meals, mycotoxins, insecticides, pesticides, toxic plants, chemicals and drugs.

Unit 14: Pathology of Diseases of Laboratory and Wild Animals Etiopathology of common diseases of laboratory and wild animals.